(转)Hadoop集群安装配置教程_Hadoop2.6.0_Ubuntu/CentOS

本教程讲述如何配置 Hadoop 集群,默认读者已经掌握了 Hadoop 的单机伪分布式配置,否则请先查看Hadoop安装教程_单机/伪分布式配置CentOS安装Hadoop_单机/伪分布式配置

本教程由厦门大学数据库实验室出品,转载请注明。本教程适合于原生 Hadoop 2,包括 Hadoop 2.6.0, Hadoop 2.7.1 等版本,主要参考了官方安装教程,步骤详细,辅以适当说明,保证按照步骤来,都能顺利安装并运行 Hadoop。另外有Hadoop安装配置简略版方便有基础的读者快速完成安装。

为了方便新手入门,我们准备了两篇不同系统的 Hadoop 伪分布式配置教程。但其他 Hadoop 教程我们将不再区分,可同时适用于 Ubuntu 和 CentOS/RedHat 系统。例如本教程以 Ubuntu 系统为主要演示环境,但对 Ubuntu/CentOS 的不同配置之处、CentOS 6.x 与 CentOS 7 的操作区别等都会尽量给出注明。

环境

本教程使用 Ubuntu 14.04 64位 作为系统环境,基于原生 Hadoop 2,在 Hadoop 2.6.0 (stable) 版本下验证通过,可适合任何 Hadoop 2.x.y 版本,例如 Hadoop 2.7.1,Hadoop 2.4.1 等。

本教程简单的使用两个节点作为集群环境: 一个作为 Master 节点,局域网 IP 为 192.168.1.121;另一个作为 Slave 节点,局域网 IP 为 192.168.1.122。

准备工作

Hadoop 集群的安装配置大致为如下流程:

  1. 选定一台机器作为 Master
  2. 在 Master 节点上配置 hadoop 用户、安装 SSH server、安装 Java 环境
  3. 在 Master 节点上安装 Hadoop,并完成配置
  4. 在其他 Slave 节点上配置 hadoop 用户、安装 SSH server、安装 Java 环境
  5. 将 Master 节点上的 /usr/local/hadoop 目录复制到其他 Slave 节点上
  6. 在 Master 节点上开启 Hadoop

配置 hadoop 用户、安装 SSH server、安装 Java 环境、安装 Hadoop 等过程已经在Hadoop安装教程_单机/伪分布式配置CentOS安装Hadoop_单机/伪分布式配置中有详细介绍,请前往查看,不再重复叙述。

继续下一步配置前,请先完成上述流程的前 4 个步骤

网络配置

假设集群所用的节点都位于同一个局域网。

如果使用的是虚拟机安装的系统,那么需要更改网络连接方式为桥接(Bridge)模式,才能实现多个节点互连,例如在 VirturalBox 中的设置如下图。此外,如果节点的系统是在虚拟机中直接复制的,要确保各个节点的 Mac 地址不同(可以点右边的按钮随机生成 MAC 地址,否则 IP 会冲突):

VirturalBox中节点的网络设置VirturalBox中节点的网络设置

Linux 中查看节点 IP 地址的命令为 ifconfig,即下图所示的 inet 地址(注意虚拟机安装的 CentoS 不会自动联网,需要点右上角连上网络才能看到 IP 地址):

Linux查看IP命令Linux查看IP命令

首先在 Master 节点上完成准备工作,并关闭 Hadoop (/usr/local/hadoop/sbin/stop-dfs.sh),再进行后续集群配置。

为了便于区分,可以修改各个节点的主机名(在终端标题、命令行中可以看到主机名,以便区分)。在 Ubuntu/CentOS 7 中,我们在 Master 节点上执行如下命令修改主机名(即改为 Master,注意是区分大小写的):

  1. sudo vim /etc/hostname
Shell 命令

如果是用 CentOS 6.x 系统,则是修改 /etc/sysconfig/network 文件,改为 HOSTNAME=Master,如下图所示:

CentOS中hostname设置CentOS中hostname设置

然后执行如下命令修改自己所用节点的IP映射:

  1. sudo vim /etc/hosts
Shell 命令

例如本教程使用两个节点的名称与对应的 IP 关系如下:

192.168.1.121   Master
192.168.1.122   Slave1

我们在 /etc/hosts 中将该映射关系填写上去即可,如下图所示(一般该文件中只有一个 127.0.0.1,其对应名为 localhost,如果有多余的应删除,特别是不能有 “127.0.0.1 Master” 这样的记录):

Hadoop中的hosts设置Hadoop中的hosts设置

CentOS 中的 /etc/hosts 配置则如下图所示:

CentOS中的hosts设置CentOS中的hosts设置

修改完成后需要重启一下,重启后在终端中才会看到机器名的变化。接下来的教程中请注意区分 Master 节点与 Slave 节点的操作。

需要在所有节点上完成网络配置如上面讲的是 Master 节点的配置,而在其他的 Slave 节点上,也要对 /etc/hostname(修改为 Slave1、Slave2 等) 和 /etc/hosts(跟 Master 的配置一样)这两个文件进行修改!

配置好后需要在各个节点上执行如下命令,测试是否相互 ping 得通,如果 ping 不通,后面就无法顺利配置成功:

  1. ping Master -c 3 # 只ping 3次,否则要按 Ctrl+c 中断
  2. ping Slave1 -c 3
Shell 命令

例如我在 Master 节点上 ping Slave1,ping 通的话会显示 time,显示的结果如下图所示:

检查是否ping得通检查是否ping得通

继续下一步配置前,请先完成所有节点的网络配置,修改过主机名的话需重启才能生效

SSH无密码登陆节点

这个操作是要让 Master 节点可以无密码 SSH 登陆到各个 Slave 节点上。

首先生成 Master 节点的公匙,在 Master 节点的终端中执行(因为改过主机名,所以还需要删掉原有的再重新生成一次):

  1. cd ~/.ssh # 如果没有该目录,先执行一次ssh localhost
  2. rm ./id_rsa* # 删除之前生成的公匙(如果有)
  3. ssh-keygen -t rsa # 一直按回车就可以
Shell 命令

让 Master 节点需能无密码 SSH 本机,在 Master 节点上执行:

  1. cat ./id_rsa.pub >> ./authorized_keys
Shell 命令

完成后可执行 ssh Master 验证一下(可能需要输入 yes,成功后执行 exit 返回原来的终端)。接着在 Master 节点将上公匙传输到 Slave1 节点:

  1. scp ~/.ssh/id_rsa.pub hadoop@Slave1:/home/hadoop/
Shell 命令

scp 是 secure copy 的简写,用于在 Linux 下进行远程拷贝文件,类似于 cp 命令,不过 cp 只能在本机中拷贝。执行 scp 时会要求输入 Slave1 上 hadoop 用户的密码(hadoop),输入完成后会提示传输完毕,如下图所示:

通过scp向远程主机拷贝文件通过scp向远程主机拷贝文件

接着在 Slave1 节点上,将 ssh 公匙加入授权:

  1. mkdir ~/.ssh # 如果不存在该文件夹需先创建,若已存在则忽略
  2. cat ~/id_rsa.pub >> ~/.ssh/authorized_keys
  3. rm ~/id_rsa.pub # 用完就可以删掉了
Shell 命令

如果有其他 Slave 节点,也要执行将 Master 公匙传输到 Slave 节点、在 Slave 节点上加入授权这两步。

这样,在 Master 节点上就可以无密码 SSH 到各个 Slave 节点了,可在 Master 节点上执行如下命令进行检验,如下图所示:

  1. ssh Slave1
Shell 命令

在Master节点中ssh到Slave节点在Master节点中ssh到Slave节点

配置PATH变量

(CentOS 单机配置 Hadoop 的教程中有配置这一项了,这一步可以跳过)

在单机伪分布式配置教程的最后,说到可以将 Hadoop 安装目录加入 PATH 变量中,这样就可以在任意目录中直接使用 hadoo、hdfs 等命令了,如果还没有配置的,需要在 Master 节点上进行配置。首先执行 vim ~/.bashrc,加入一行:

export PATH=$PATH:/usr/local/hadoop/bin:/usr/local/hadoop/sbin

如下图所示:

配置PATH变量配置PATH变量

保存后执行 source ~/.bashrc 使配置生效。

配置集群/分布式环境

集群/分布式模式需要修改 /usr/local/hadoop/etc/hadoop 中的5个配置文件,更多设置项可点击查看官方说明,这里仅设置了正常启动所必须的设置项: slaves、core-site.xmlhdfs-site.xmlmapred-site.xmlyarn-site.xml

1, 文件 slaves,将作为 DataNode 的主机名写入该文件,每行一个,默认为 localhost,所以在伪分布式配置时,节点即作为 NameNode 也作为 DataNode。分布式配置可以保留 localhost,也可以删掉,让 Master 节点仅作为 NameNode 使用。

本教程让 Master 节点仅作为 NameNode 使用,因此将文件中原来的 localhost 删除,只添加一行内容:Slave1。

2, 文件 core-site.xml 改为下面的配置:

  1. <configuration>
  2. <property>
  3. <name>fs.defaultFS</name>
  4. <value>hdfs://Master:9000</value>
  5. </property>
  6. <property>
  7. <name>hadoop.tmp.dir</name>
  8. <value>file:/usr/local/hadoop/tmp</value>
  9. <description>Abase for other temporary directories.</description>
  10. </property>
  11. </configuration>
XML

3, 文件 hdfs-site.xml,dfs.replication 一般设为 3,但我们只有一个 Slave 节点,所以 dfs.replication 的值还是设为 1:

  1. <configuration>
  2. <property>
  3. <name>dfs.namenode.secondary.http-address</name>
  4. <value>Master:50090</value>
  5. </property>
  6. <property>
  7. <name>dfs.replication</name>
  8. <value>1</value>
  9. </property>
  10. <property>
  11. <name>dfs.namenode.name.dir</name>
  12. <value>file:/usr/local/hadoop/tmp/dfs/name</value>
  13. </property>
  14. <property>
  15. <name>dfs.datanode.data.dir</name>
  16. <value>file:/usr/local/hadoop/tmp/dfs/data</value>
  17. </property>
  18. </configuration>
XML

4, 文件 mapred-site.xml (可能需要先重命名,默认文件名为 mapred-site.xml.template),然后配置修改如下:

  1. <configuration>
  2. <property>
  3. <name>mapreduce.framework.name</name>
  4. <value>yarn</value>
  5. </property>
  6. <property>
  7. <name>mapreduce.jobhistory.address</name>
  8. <value>Master:10020</value>
  9. </property>
  10. <property>
  11. <name>mapreduce.jobhistory.webapp.address</name>
  12. <value>Master:19888</value>
  13. </property>
  14. </configuration>
XML

5, 文件 yarn-site.xml

  1. <configuration>
  2. <property>
  3. <name>yarn.resourcemanager.hostname</name>
  4. <value>Master</value>
  5. </property>
  6. <property>
  7. <name>yarn.nodemanager.aux-services</name>
  8. <value>mapreduce_shuffle</value>
  9. </property>
  10. </configuration>
XML

配置好后,将 Master 上的 /usr/local/Hadoop 文件夹复制到各个节点上。因为之前有跑过伪分布式模式,建议在切换到集群模式前先删除之前的临时文件。在 Master 节点上执行:

  1. cd /usr/local
  2. sudo rm -r ./hadoop/tmp # 删除 Hadoop 临时文件
  3. sudo rm -r ./hadoop/logs/* # 删除日志文件
  4. tar -zcf ~/hadoop.master.tar.gz ./hadoop # 先压缩再复制
  5. cd ~
  6. scp ./hadoop.master.tar.gz Slave1:/home/hadoop
Shell 命令

在 Slave1 节点上执行:

  1. sudo rm -r /usr/local/hadoop # 删掉旧的(如果存在)
  2. sudo tar -zxf ~/hadoop.master.tar.gz -C /usr/local
  3. sudo chown -R hadoop /usr/local/hadoop
Shell 命令

同样,如果有其他 Slave 节点,也要执行将 hadoop.master.tar.gz 传输到 Slave 节点、在 Slave 节点解压文件的操作。

首次启动需要先在 Master 节点执行 NameNode 的格式化:

  1. hdfs namenode -format # 首次运行需要执行初始化,之后不需要
Shell 命令
CentOS系统需要关闭防火墙CentOS系统默认开启了防火墙,在开启 Hadoop 集群之前,需要关闭集群中每个节点的防火墙。有防火墙会导致 ping 得通但 telnet 端口不通,从而导致 DataNode 启动了,但 Live datanodes 为 0 的情况。在 CentOS 6.x 中,可以通过如下命令关闭防火墙:

  1. sudo service iptables stop # 关闭防火墙服务
  2. sudo chkconfig iptables off # 禁止防火墙开机自启,就不用手动关闭了
Shell 命令

若用是 CentOS 7,需通过如下命令关闭(防火墙服务改成了 firewall):

  1. systemctl stop firewalld.service # 关闭firewall
  2. systemctl disable firewalld.service # 禁止firewall开机启动
Shell 命令

如下图,是在 CentOS 6.x 中关闭防火墙:

CentOS6.x系统关闭防火墙CentOS6.x系统关闭防火墙

接着可以启动 hadoop 了,启动需要在 Master 节点上进行:

  1. start-dfs.sh
  2. start-yarn.sh
  3. mr-jobhistory-daemon.sh start historyserver
Shell 命令

通过命令 jps 可以查看各个节点所启动的进程。正确的话,在 Master 节点上可以看到 NameNode、ResourceManager、SecondrryNameNode、JobHistoryServer 进程,如下图所示:

通过jps查看Master的Hadoop进程通过jps查看Master的Hadoop进程

在 Slave 节点可以看到 DataNode 和 NodeManager 进程,如下图所示:

通过jps查看Slave的Hadoop进程通过jps查看Slave的Hadoop进程

缺少任一进程都表示出错。另外还需要在 Master 节点上通过命令 hdfs dfsadmin -report 查看 DataNode 是否正常启动,如果 Live datanodes 不为 0 ,则说明集群启动成功。例如我这边一共有 1 个 Datanodes:

通过dfsadmin查看DataNode的状态通过dfsadmin查看DataNode的状态

也可以通过 Web 页面看到查看 DataNode 和 NameNode 的状态:http://master:50070/。如果不成功,可以通过启动日志排查原因。

伪分布式、分布式配置切换时的注意事项

  1. 从分布式切换到伪分布式时,不要忘记修改 slaves 配置文件;
  2. 在两者之间切换时,若遇到无法正常启动的情况,可以删除所涉及节点的临时文件夹,这样虽然之前的数据会被删掉,但能保证集群正确启动。所以如果集群以前能启动,但后来启动不了,特别是 DataNode 无法启动,不妨试着删除所有节点(包括 Slave 节点)上的 /usr/local/hadoop/tmp 文件夹,再重新执行一次hdfs namenode -format,再次启动试试。

执行分布式实例

执行分布式实例过程与伪分布式模式一样,首先创建 HDFS 上的用户目录:

  1. hdfs dfs -mkdir -p /user/hadoop
Shell 命令

将 /usr/local/hadoop/etc/hadoop 中的配置文件作为输入文件复制到分布式文件系统中:

  1. hdfs dfs -mkdir input
  2. hdfs dfs -put /usr/local/hadoop/etc/hadoop/*.xml input
Shell 命令

通过查看 DataNode 的状态(占用大小有改变),输入文件确实复制到了 DataNode 中,如下图所示:

通过Web页面查看DataNode的状态通过Web页面查看DataNode的状态

接着就可以运行 MapReduce 作业了:

  1. hadoop jar /usr/local/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-examples-*.jar grep input output ‘dfs[a-z.]+’
Shell 命令

运行时的输出信息与伪分布式类似,会显示 Job 的进度。

可能会有点慢,但如果迟迟没有进度,比如 5 分钟都没看到进度,那不妨重启 Hadoop 再试试。若重启还不行,则很有可能是内存不足引起,建议增大虚拟机的内存,或者通过更改 YARN 的内存配置解决。

显示MapReduce Job的进度显示MapReduce Job的进度

同样可以通过 Web 界面查看任务进度 http://master:8088/cluster,在 Web 界面点击 “Tracking UI” 这一列的 History 连接,可以看到任务的运行信息,如下图所示:

通过Web页面查看集群和MapReduce作业的信息通过Web页面查看集群和MapReduce作业的信息

执行完毕后的输出结果:

MapReduce作业的输出结果MapReduce作业的输出结果

关闭 Hadoop 集群也是在 Master 节点上执行的:

  1. stop-yarn.sh
  2. stop-dfs.sh
  3. mr-jobhistory-daemon.sh stop historyserver
Shell 命令

此外,同伪分布式一样,也可以不启动 YARN,但要记得改掉 mapred-site.xml 的文件名。

自此,你就掌握了 Hadoop 的集群搭建与基本使用了。

(转)Hadoop安装教程_单机/伪分布式配置_Hadoop2.6.0/Ubuntu14.04

当开始着手实践 Hadoop 时,安装 Hadoop 往往会成为新手的一道门槛。尽管安装其实很简单,书上有写到,官方网站也有 Hadoop 安装配置教程,但由于对 Linux 环境不熟悉,书上跟官网上简略的安装步骤新手往往 Hold 不住。加上网上不少教程也甚是坑,导致新手折腾老几天愣是没装好,很是打击学习热情。

本教程由厦门大学数据库实验室出品,转载请注明。本教程适合于原生 Hadoop 2,包括 Hadoop 2.6.0, Hadoop 2.7.1 等版本,主要参考了官方安装教程,步骤详细,辅以适当说明,相信按照步骤来,都能顺利安装并运行Hadoop。另外有Hadoop安装配置简略版方便有基础的读者快速完成安装。此外,希望读者们能多去了解一些 Linux 的知识,以后出现问题时才能自行解决。

环境

本教程使用 Ubuntu 14.04 64位 作为系统环境(Ubuntu 12.04 也行,32位、64位均可),请自行安装系统(可参考使用VirtualBox安装Ubuntu)。

如果用的是 CentOS/RedHat 系统,请查看相应的CentOS安装Hadoop教程_单机伪分布式配置

本教程基于原生 Hadoop 2,在 Hadoop 2.6.0 (stable) 版本下验证通过,可适合任何 Hadoop 2.x.y 版本,例如 Hadoop 2.4.1。

Hadoop版本Hadoop 有两个主要版本,Hadoop 1.x.y 和 Hadoop 2.x.y 系列,比较老的教材上用的可能是 0.20 这样的版本。Hadoop 2.x 版本在不断更新,本教程均可适用。如果需安装 0.20,1.2.1这样的版本,本教程也可以作为参考,主要差别在于配置项,配置请参考官网教程或其他教程。

新版是兼容旧版的,书上旧版本的代码应该能够正常运行(我自己没验证,欢迎验证反馈)。

装好了 Ubuntu 系统之后,在安装 Hadoop 前还需要做一些必备工作。

创建hadoop用户

如果你安装 Ubuntu 的时候不是用的 “hadoop” 用户,那么需要增加一个名为 hadoop 的用户。

首先按 ctrl+alt+t 打开终端窗口,输入如下命令创建新用户 :

  1. sudo useradd -m hadoop -s /bin/bash
Shell 命令

这条命令创建了可以登陆的 hadoop 用户,并使用 /bin/bash 作为 shell。

Ubuntu终端复制粘贴快捷键在Ubuntu终端窗口中,复制粘贴的快捷键需要加上 shift,即粘贴是 ctrl+shift+v。

接着使用如下命令设置密码,可简单设置为 hadoop,按提示输入两次密码:

  1. sudo passwd hadoop
Shell 命令

可为 hadoop 用户增加管理员权限,方便部署,避免一些对新手来说比较棘手的权限问题:

  1. sudo adduser hadoop sudo
Shell 命令

最后注销当前用户(点击屏幕右上角的齿轮,选择注销),在登陆界面使用刚创建的 hadoop 用户进行登陆。

更新apt

用 hadoop 用户登录后,我们先更新一下 apt,后续我们使用 apt 安装软件,如果没更新可能有一些软件安装不了。按 ctrl+alt+t 打开终端窗口,执行如下命令:

  1. sudo apt-get update
Shell 命令

若出现如下 “Hash校验和不符” 的提示,可通过更改软件源来解决。若没有该问题,则不需要更改。

Ubuntu更新软件源时遇到Hash校验和不符的问题Ubuntu更新软件源时遇到Hash校验和不符的问题

后续需要更改一些配置文件,我比较喜欢用的是 vim(vi增强版,基本用法相同),建议安装一下(如果你实在还不会用 vi/vim 的,请将后面用到 vim 的地方改为 gedit,这样可以使用文本编辑器进行修改,并且每次文件更改完成后请关闭整个 gedit 程序,否则会占用终端):

  1. sudo apt-get install vim
Shell 命令

安装软件时若需要确认,在提示处输入 y 即可。

通过命令行安装软件通过命令行安装软件

安装SSH、配置SSH无密码登陆

集群、单节点模式都需要用到 SSH 登陆(类似于远程登陆,你可以登录某台 Linux 主机,并且在上面运行命令),Ubuntu 默认已安装了 SSH client,此外还需要安装 SSH server:

  1. sudo apt-get install openssh-server
Shell 命令

安装后,可以使用如下命令登陆本机:

  1. ssh localhost
Shell 命令

此时会有如下提示(SSH首次登陆提示),输入 yes 。然后按提示输入密码 hadoop,这样就登陆到本机了。

SSH首次登陆提示SSH首次登陆提示

但这样登陆是需要每次输入密码的,我们需要配置成SSH无密码登陆比较方便。

首先退出刚才的 ssh,就回到了我们原先的终端窗口,然后利用 ssh-keygen 生成密钥,并将密钥加入到授权中:

  1. exit # 退出刚才的 ssh localhost
  2. cd ~/.ssh/ # 若没有该目录,请先执行一次ssh localhost
  3. ssh-keygen -t rsa # 会有提示,都按回车就可以
  4. cat ./id_rsa.pub >> ./authorized_keys # 加入授权
Shell 命令
~的含义在 Linux 系统中,~ 代表的是用户的主文件夹,即 “/home/用户名” 这个目录,如你的用户名为 hadoop,则 ~ 就代表 “/home/hadoop/”。 此外,命令中的 # 后面的文字是注释。

此时再用 ssh localhost 命令,无需输入密码就可以直接登陆了,如下图所示。

SSH无密码登录SSH无密码登录

安装Java环境

Java环境可选择 Oracle 的 JDK,或是 OpenJDK,按http://wiki.apache.org/hadoop/HadoopJavaVersions中说的,新版本在 OpenJDK 1.7 下是没问题的。为图方便,这边直接通过命令安装 OpenJDK 7。

  1. sudo apt-get install openjdk-7-jre openjdk-7-jdk
Shell 命令
JRE和JDK的区别JRE(Java Runtime Environment,Java运行环境),是运行 Java 所需的环境。JDK(Java Development Kit,Java软件开发工具包)即包括 JRE,还包括开发 Java 程序所需的工具和类库。

安装好 OpenJDK 后,需要找到相应的安装路径,这个路径是用于配置 JAVA_HOME 环境变量的。执行如下命令:

  1. dpkg -L openjdk-7-jdk | grep ‘/bin/javac’
Shell 命令

该命令会输出一个路径,除去路径末尾的 “/bin/javac”,剩下的就是正确的路径了。如输出路径为 /usr/lib/jvm/java-7-openjdk-amd64/bin/javac,则我们需要的路径为 /usr/lib/jvm/java-7-openjdk-amd64。

接着配置 JAVA_HOME 环境变量,为方便,我们在 ~/.bashrc 中进行设置(扩展阅读: 设置Linux环境变量的方法和区别):

  1. vim ~/.bashrc
Shell 命令

在文件最前面添加如下单独一行(注意 = 号前后不能有空格),将“JDK安装路径”改为上述命令得到的路径,并保存:

  1. export JAVA_HOME=JDK安装路径
Shell

如下图所示(该文件原本可能不存在,内容为空,这不影响):

配置JAVA_HOME变量配置JAVA_HOME变量

接着还需要让该环境变量生效,执行如下代码:

  1. source ~/.bashrc # 使变量设置生效
Shell 命令

设置好后我们来检验一下是否设置正确:

  1. echo $JAVA_HOME # 检验变量值
  2. java -version
  3. $JAVA_HOME/bin/java -version # 与直接执行 java -version 一样
Shell 命令

如果设置正确的话,$JAVA_HOME/bin/java -version 会输出 java 的版本信息,且和 java -version 的输出结果一样,如下图所示:

成功配置JAVA_HOME变量成功配置JAVA_HOME变量

这样,Hadoop 所需的 Java 运行环境就安装好了。

安装 Hadoop 2

Hadoop 2 可以通过 http://mirror.bit.edu.cn/apache/hadoop/common/ 或者http://mirrors.cnnic.cn/apache/hadoop/common/ 下载,一般选择下载最新的稳定版本,即下载 “stable” 下的 hadoop-2.x.y.tar.gz 这个格式的文件,这是编译好的,另一个包含 src 的则是 Hadoop 源代码,需要进行编译才可使用。

下载时强烈建议也下载 hadoop-2.x.y.tar.gz.mds 这个文件,该文件包含了检验值可用于检查 hadoop-2.x.y.tar.gz 的完整性,否则若文件发生了损坏或下载不完整,Hadoop 将无法正常运行。

本文涉及的文件均通过浏览器下载,默认保存在 “下载” 目录中(若不是请自行更改 tar 命令的相应目录)。另外,本教程选择的是 2.6.0 版本,如果你用的不是 2.6.0 版本,则将所有命令中出现的 2.6.0 更改为你所使用的版本。

  1. cat ~/下载/hadoop-2.6.0.tar.gz.mds | grep ‘MD5’ # 列出md5检验值
  2. # head -n 6 ~/下载/hadoop-2.7.1.tar.gz.mds # 2.7.1版本格式变了,可以用这种方式输出
  3. md5sum ~/下载/hadoop-2.6.0.tar.gz | tr “a-z” “A-Z” # 计算md5值,并转化为大写,方便比较
Shell 命令

若文件不完整则这两个值一般差别很大,可以简单对比下前几个字符跟后几个字符是否相等即可,如下图所示,如果两个值不一样,请务必重新下载。

检验文件完整性检验文件完整性

我们选择将 Hadoop 安装至 /usr/local/ 中:

  1. sudo tar -zxf ~/下载/hadoop-2.6.0.tar.gz -C /usr/local # 解压到/usr/local中
  2. cd /usr/local/
  3. sudo mv ./hadoop-2.6.0/ ./hadoop # 将文件夹名改为hadoop
  4. sudo chown -R hadoop ./hadoop # 修改文件权限
Shell 命令

Hadoop 解压后即可使用。输入如下命令来检查 Hadoop 是否可用,成功则会显示 Hadoop 版本信息:

  1. cd /usr/local/hadoop
  2. ./bin/hadoop version
Shell 命令
相对路径与绝对路径的区别请务必注意命令中的相对路径与绝对路径,本文后续出现的 ./bin/..../etc/... 等包含 ./ 的路径,均为相对路径,以 /usr/local/hadoop 为当前目录。例如在 /usr/local/hadoop 目录中执行 ./bin/hadoop version 等同于执行 /usr/local/hadoop/bin/hadoop version。可以将相对路径改成绝对路径来执行,但如果你是在主文件夹 ~ 中执行 ./bin/hadoop version,执行的会是 /home/hadoop/bin/hadoop version,就不是我们所想要的了。

Hadoop单机配置(非分布式)

Hadoop 默认模式为非分布式模式,无需进行其他配置即可运行。非分布式即单 Java 进程,方便进行调试。

现在我们可以执行例子来感受下 Hadoop 的运行。Hadoop 附带了丰富的例子(运行 ./bin/hadoop jar ./share/hadoop/mapreduce/hadoop-mapreduce-examples-2.6.0.jar 可以看到所有例子),包括 wordcount、terasort、join、grep 等。

在此我们选择运行 grep 例子,我们将 input 文件夹中的所有文件作为输入,筛选当中符合正则表达式 dfs[a-z.]+ 的单词并统计出现的次数,最后输出结果到 output 文件夹中。

  1. cd /usr/local/hadoop
  2. mkdir ./input
  3. cp ./etc/hadoop/*.xml ./input # 将配置文件作为输入文件
  4. ./bin/hadoop jar ./share/hadoop/mapreduce/hadoop-mapreduce-examples-*.jar grep ./input ./output ‘dfs[a-z.]+’
  5. cat ./output/* # 查看运行结果
Shell 命令

执行成功后如下所示,输出了作业的相关信息,输出的结果是符合正则的单词 dfsadmin 出现了1次

Hadoop单机模式运行grep的输出结果Hadoop单机模式运行grep的输出结果

注意,Hadoop 默认不会覆盖结果文件,因此再次运行上面实例会提示出错,需要先将 ./output 删除。

  1. rm -r ./output
Shell 命令

Hadoop伪分布式配置

Hadoop 可以在单节点上以伪分布式的方式运行,Hadoop 进程以分离的 Java 进程来运行,节点既作为 NameNode 也作为 DataNode,同时,读取的是 HDFS 中的文件。

Hadoop 的配置文件位于 /usr/local/hadoop/etc/hadoop/ 中,伪分布式需要修改2个配置文件 core-site.xmlhdfs-site.xml 。Hadoop的配置文件是 xml 格式,每个配置以声明 property 的 name 和 value 的方式来实现。

修改配置文件 core-site.xml (通过 gedit 编辑会比较方便: gedit ./etc/hadoop/core-site.xml),将当中的

  1. <configuration>
  2. </configuration>
XML

修改为下面配置:

  1. <configuration>
  2. <property>
  3. <name>hadoop.tmp.dir</name>
  4. <value>file:/usr/local/hadoop/tmp</value>
  5. <description>Abase for other temporary directories.</description>
  6. </property>
  7. <property>
  8. <name>fs.defaultFS</name>
  9. <value>hdfs://localhost:9000</value>
  10. </property>
  11. </configuration>
XML

同样的,修改配置文件 hdfs-site.xml

  1. <configuration>
  2. <property>
  3. <name>dfs.replication</name>
  4. <value>1</value>
  5. </property>
  6. <property>
  7. <name>dfs.namenode.name.dir</name>
  8. <value>file:/usr/local/hadoop/tmp/dfs/name</value>
  9. </property>
  10. <property>
  11. <name>dfs.datanode.data.dir</name>
  12. <value>file:/usr/local/hadoop/tmp/dfs/data</value>
  13. </property>
  14. </configuration>
XML
Hadoop配置文件说明Hadoop 的运行方式是由配置文件决定的(运行 Hadoop 时会读取配置文件),因此如果需要从伪分布式模式切换回非分布式模式,需要删除 core-site.xml 中的配置项。

此外,伪分布式虽然只需要配置 fs.defaultFS 和 dfs.replication 就可以运行(官方教程如此),不过若没有配置 hadoop.tmp.dir 参数,则默认使用的临时目录为 /tmp/hadoo-hadoop,而这个目录在重启时有可能被系统清理掉,导致必须重新执行 format 才行。所以我们进行了设置,同时也指定 dfs.namenode.name.dir 和 dfs.datanode.data.dir,否则在接下来的步骤中可能会出错。

配置完成后,执行 NameNode 的格式化:

  1. ./bin/hdfs namenode -format
Shell 命令

成功的话,会看到 “successfully formatted” 和 “Exitting with status 0” 的提示,若为 “Exitting with status 1” 则是出错。

执行namenode格式化执行namenode格式化

如果在这一步时提示 Error: JAVA_HOME is not set and could not be found. 的错误,则说明之前设置 JAVA_HOME 环境变量那边就没设置好,请按教程先设置好 JAVA_HOME 变量,否则后面的过程都是进行不下去的。

接着开启 NameNode 和 DataNode 守护进程。

  1. ./sbin/start-dfs.sh
Shell 命令

若出现如下SSH提示,输入yes即可。

启动Hadoop时的SSH提示启动Hadoop时的SSH提示

启动时可能会出现如下 WARN 提示:WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform… using builtin-java classes where applicable。该 WARN 提示可以忽略,并不会影响正常使用(该 WARN 可以通过编译 Hadoop 源码解决)。

启动 Hadoop 时提示 Could not resolve hostname如果启动 Hadoop 时遇到输出非常多“ssh: Could not resolve hostname xxx”的异常情况,如下图所示:

启动Hadoop时的异常提示启动Hadoop时的异常提示

这个并不是 ssh 的问题,可通过设置 Hadoop 环境变量来解决。首先按键盘的 ctrl + c 中断启动,然后在 ~/.bashrc 中,增加如下两行内容(设置过程与 JAVA_HOME 变量一样,其中 HADOOP_HOME 为 Hadoop 的安装目录):

  1. export HADOOP_HOME=/usr/local/hadoop
  2. export HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_HOME/lib/native
Shell

保存后,务必执行 source ~/.bashrc 使变量设置生效,然后再次执行 ./sbin/start-dfs.sh 启动 Hadoop。

启动完成后,可以通过命令 jps 来判断是否成功启动,若成功启动则会列出如下进程: “NameNode”、”DataNode” 和 “SecondaryNameNode”(如果 SecondaryNameNode 没有启动,请运行 sbin/stop-dfs.sh 关闭进程,然后再次尝试启动尝试)。如果没有 NameNode 或 DataNode ,那就是配置不成功,请仔细检查之前步骤,或通过查看启动日志排查原因。

通过jps查看启动的Hadoop进程通过jps查看启动的Hadoop进程

一般情况下,若是 DataNode 没有启动,可尝试如下的方法(注意这会删除 HDFS 中原有的所有数据,如果原有的数据很重要请不要这样做):

  1. ./sbin/stop-dfs.sh # 关闭
  2. rm -r ./tmp 删除 tmp 文件,注意这会删除 HDFS 中原有的所有数据
  3. ./bin/hdfs namenode -format 重新格式化 NameNode
  4. ./sbin/start-dfs.sh # 重启
Shell 命令
Hadoop无法正常启动的解决方法一般可以查看启动日志来排查原因,注意几点:

  • 启动时会提示形如 “DBLab-XMU: starting namenode, logging to /usr/local/hadoop/logs/hadoop-hadoop-namenode-DBLab-XMU.out”,其中 DBLab-XMU 对应你的机器名,但其实启动日志信息是记录在 /usr/local/hadoop/logs/hadoop-hadoop-namenode-DBLab-XMU.log 中,所以应该查看这个后缀为 .log 的文件;
  • 每一次的启动日志都是追加在日志文件之后,所以得拉到最后面看,对比下记录的时间就知道了。
  • 一般出错的提示在最后面,通常是写着 Fatal、Error、Warning 或者 Java Exception 的地方。
  • 可以在网上搜索一下出错信息,看能否找到一些相关的解决方法。

此外,若是 DataNode 没有启动,可尝试如下的方法(注意这会删除 HDFS 中原有的所有数据,如果原有的数据很重要请不要这样做):

  1. # 针对 DataNode 没法启动的解决方法
  2. ./sbin/stop-dfs.sh # 关闭
  3. rm -r ./tmp # 删除 tmp 文件,注意这会删除 HDFS 中原有的所有数据
  4. ./bin/hdfs namenode -format # 重新格式化 NameNode
  5. ./sbin/start-dfs.sh # 重启
Shell 命令

成功启动后,可以访问 Web 界面 http://localhost:50070 查看 NameNode 和 Datanode 信息,还可以在线查看 HDFS 中的文件。

Hadoop的Web界面Hadoop的Web界面

运行Hadoop伪分布式实例

上面的单机模式,grep 例子读取的是本地数据,伪分布式读取的则是 HDFS 上的数据。要使用 HDFS,首先需要在 HDFS 中创建用户目录:

  1. ./bin/hdfs dfs -mkdir -p /user/hadoop
Shell 命令

接着将 ./etc/hadoop 中的 xml 文件作为输入文件复制到分布式文件系统中,即将 /usr/local/hadoop/etc/hadoop 复制到分布式文件系统中的 /user/hadoop/input 中。我们使用的是 hadoop 用户,并且已创建相应的用户目录 /user/hadoop ,因此在命令中就可以使用相对路径如 input,其对应的绝对路径就是 /user/hadoop/input:

  1. ./bin/hdfs dfs -mkdir input
  2. ./bin/hdfs dfs -put ./etc/hadoop/*.xml input
Shell 命令

复制完成后,可以通过如下命令查看文件列表:

  1. ./bin/hdfs dfs -ls input
Shell 命令

伪分布式运行 MapReduce 作业的方式跟单机模式相同,区别在于伪分布式读取的是HDFS中的文件(可以将单机步骤中创建的本地 input 文件夹,输出结果 output 文件夹都删掉来验证这一点)。

  1. ./bin/hadoop jar ./share/hadoop/mapreduce/hadoop-mapreduce-examples-*.jar grep input output ‘dfs[a-z.]+’
Shell 命令

查看运行结果的命令(查看的是位于 HDFS 中的输出结果):

  1. ./bin/hdfs dfs -cat output/*
Shell 命令

结果如下,注意到刚才我们已经更改了配置文件,所以运行结果不同。

Hadoop伪分布式运行grep结果Hadoop伪分布式运行grep结果

我们也可以将运行结果取回到本地:

  1. rm -r ./output # 先删除本地的 output 文件夹(如果存在)
  2. ./bin/hdfs dfs -get output ./output # 将 HDFS 上的 output 文件夹拷贝到本机
  3. cat ./output/*
Shell 命令

Hadoop 运行程序时,输出目录不能存在,否则会提示错误 “org.apache.hadoop.mapred.FileAlreadyExistsException: Output directory hdfs://localhost:9000/user/hadoop/output already exists” ,因此若要再次执行,需要执行如下命令删除 output 文件夹:

  1. ./bin/hdfs dfs -rm -r output # 删除 output 文件夹
Shell 命令
运行程序时,输出目录不能存在运行 Hadoop 程序时,为了防止覆盖结果,程序指定的输出目录(如 output)不能存在,否则会提示错误,因此运行前需要先删除输出目录。在实际开发应用程序时,可考虑在程序中加上如下代码,能在每次运行时自动删除输出目录,避免繁琐的命令行操作:

  1. Configuration conf = new Configuration();
  2. Job job = new Job(conf);
  3.  
  4. /* 删除输出目录 */
  5. Path outputPath = new Path(args[1]);
  6. outputPath.getFileSystem(conf).delete(outputPath, true);
Java

若要关闭 Hadoop,则运行

  1. ./sbin/stop-dfs.sh
Shell 命令
注意下次启动 hadoop 时,无需进行 NameNode 的初始化,只需要运行 ./sbin/start-dfs.sh 就可以!

启动YARN

(伪分布式不启动 YARN 也可以,一般不会影响程序执行)

有的读者可能会疑惑,怎么启动 Hadoop 后,见不到书上所说的 JobTracker 和 TaskTracker,这是因为新版的 Hadoop 使用了新的 MapReduce 框架(MapReduce V2,也称为 YARN,Yet Another Resource Negotiator)。

YARN 是从 MapReduce 中分离出来的,负责资源管理与任务调度。YARN 运行于 MapReduce 之上,提供了高可用性、高扩展性,YARN 的更多介绍在此不展开,有兴趣的可查阅相关资料。

上述通过 ./sbin/start-dfs.sh 启动 Hadoop,仅仅是启动了 MapReduce 环境,我们可以启动 YARN ,让 YARN 来负责资源管理与任务调度。

首先修改配置文件 mapred-site.xml,这边需要先进行重命名:

  1. mv ./etc/hadoop/mapred-site.xml.template ./etc/hadoop/mapred-site.xml
Shell 命令

然后再进行编辑,同样使用 gedit 编辑会比较方便些 gedit ./etc/hadoop/mapred-site.xml

  1. <configuration>
  2. <property>
  3. <name>mapreduce.framework.name</name>
  4. <value>yarn</value>
  5. </property>
  6. </configuration>
XML

接着修改配置文件 yarn-site.xml

  1. <configuration>
  2. <property>
  3. <name>yarn.nodemanager.aux-services</name>
  4. <value>mapreduce_shuffle</value>
  5. </property>
  6. </configuration>
XML

然后就可以启动 YARN 了(需要先执行过 ./sbin/start-dfs.sh):

  1. ./sbin/start-yarn.sh # 启动YARN
  2. ./sbin/mr-jobhistory-daemon.sh start historyserver # 开启历史服务器,才能在Web中查看任务运行情况
Shell 命令

开启后通过 jps 查看,可以看到多了 NodeManager 和 ResourceManager 两个后台进程,如下图所示。

开启YARN开启YARN

启动 YARN 之后,运行实例的方法还是一样的,仅仅是资源管理方式、任务调度不同。观察日志信息可以发现,不启用 YARN 时,是 “mapred.LocalJobRunner” 在跑任务,启用 YARN 之后,是 “mapred.YARNRunner” 在跑任务。启动 YARN 有个好处是可以通过 Web 界面查看任务的运行情况:http://localhost:8088/cluster,如下图所示。

开启YARN后可以查看任务运行信息开启YARN后可以查看任务运行信息

但 YARN 主要是为集群提供更好的资源管理与任务调度,然而这在单机上体现不出价值,反而会使程序跑得稍慢些。因此在单机上是否开启 YARN 就看实际情况了。

不启动 YARN 需重命名 mapred-site.xml如果不想启动 YARN,务必把配置文件 mapred-site.xml 重命名,改成 mapred-site.xml.template,需要用时改回来就行。否则在该配置文件存在,而未开启 YARN 的情况下,运行程序会提示 “Retrying connect to server: 0.0.0.0/0.0.0.0:8032” 的错误,这也是为何该配置文件初始文件名为 mapred-site.xml.template。

同样的,关闭 YARN 的脚本如下:

  1. ./sbin/stop-yarn.sh
  2. ./sbin/mr-jobhistory-daemon.sh stop historyserver
Shell 命令

自此,你已经掌握 Hadoop 的配置和基本使用了。

附加教程: 配置PATH环境变量

在这里额外讲一下 PATH 这个环境变量(可执行 echo $PATH 查看,当中包含了多个目录)。例如我们在主文件夹 ~ 中执行 ls 这个命令时,实际执行的是 /bin/ls 这个程序,而不是 ~/ls 这个程序。系统是根据 PATH 这个环境变量中包含的目录位置,逐一进行查找,直至在这些目录位置下找到匹配的程序(若没有匹配的则提示该命令不存在)。

上面的教程中,我们都是先进入到 /usr/local/hadoop 目录中,再执行 sbin/hadoop,实际上等同于运行/usr/local/hadoop/sbin/hadoop。我们可以将 Hadoop 命令的相关目录加入到 PATH 环境变量中,这样就可以直接通过 start-dfs.sh 开启 Hadoop,也可以直接通过 hdfs 访问 HDFS 的内容,方便平时的操作。

同样我们选择在 ~/.bashrc 中进行设置(vim ~/.bashrc,与 JAVA_HOME 的设置相似),在文件最前面加入如下单独一行:

export PATH=$PATH:/usr/local/hadoop/sbin:/usr/local/hadoop/bin

添加后执行 source ~/.bashrc 使设置生效,生效后,在任意目录中,都可以直接使用 hdfs 等命令了,读者不妨现在就执行 hdfs dfs -ls input 查看 HDFS 文件试试看。